Synaptic dysfunction in hippocampus of transgenic mouse models of Alzheimer's disease: a multi-electrode array study.

نویسندگان

  • Seon-Ah Chong
  • Iryna Benilova
  • Hamdy Shaban
  • Bart De Strooper
  • Herman Devijver
  • Dieder Moechars
  • Wolfgang Eberle
  • Carmen Bartic
  • Fred Van Leuven
  • Geert Callewaert
چکیده

APP.V717I and Tau.P301L transgenic mice develop Alzheimer's disease pathology comprising important aspects of human disease including increased levels of amyloid peptides, cognitive and motor impairment, amyloid plaques and neurofibrillary tangles. The combined model, APP.V717I×Tau.P301L bigenic mice (biAT mice) exhibit aggravated amyloid and tau pathology with severe cognitive and behavioral defects. In the present study, we investigated early changes in synaptic function in the CA1 and CA3 regions of acute hippocampal slices of young APP.V717I, Tau.P301L and biAT transgenic animals. We have used planar multi-electrode arrays (MEA) and improved methods for simultaneous multi-site recordings from two hippocampal sub-regions. In the CA1 region, long-term potentiation (LTP) was severely impaired in all transgenic animals when compared with age-matched wild-type controls, while basal synaptic transmission and paired-pulse facilitation were minimally affected. In the CA3 region, LTP was normal in Tau.P301L and APP.V717I but clearly impaired in biAT mice. Surprisingly, frequency facilitation in CA3 was significantly enhanced in Tau.P301L mice, while not affected in APP.V717I mice and depressed in biAT mice. The findings demonstrate important synaptic changes that differ considerably in the hippocampal sub-regions already at young age, well before the typical amyloid or tau pathology is evident.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cholinergic neuropathology in a mouse model of Alzheimer's disease

Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...

متن کامل

Cholinergic neuropathology in a mouse model of Alzheimer's disease

Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...

متن کامل

Area-Specific Alterations of Synaptic Plasticity in the 5XFAD Mouse Model of Alzheimer’s Disease: Dissociation between Somatosensory Cortex and Hippocampus

Transgenic mouse models of Alzheimer's disease (AD) that overproduce the amyloid beta peptide (Aβ) have highlighted impairments of hippocampal long-term synaptic plasticity associated with the progression of the disease. Here we examined whether the characteristics of one of the hallmarks of AD, i.e. Aβ deposition, in both the somatosensory cortex and the hippocampus, correlated with specific l...

متن کامل

بررسی تاثیر پروژسترون بر پراکسیداسیون لیپیدی و اختلال حافظه ناشی از مدل آلزایمر حاصل از تزریق موضعی استرپتوزوتوسین در رت

Introduction: Alzheimer’s disease is one of the most prevalent brain neurodegenerative diseases and the most common cognitive deficits are memory dysfunction and spatial perception impairment. Progesterone has a neorostroid action in hippocampal neurogenesis, synaptic stability and spatial learning and memory and has antioxidant effect. Since oxidative stress is involved in the pathogenes...

متن کامل

Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer's disease.

Alzheimer's disease (AD), characterized by cognitive decline, has emerged as a disease of synaptic failure. The present study reveals an unanticipated role of erythropoietin-producing hepatocellular A4 (EphA4) in mediating hippocampal synaptic dysfunctions in AD and demonstrates that blockade of the ligand-binding domain of EphA4 reverses synaptic impairment in AD mouse models. Enhanced EphA4 s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurobiology of disease

دوره 44 3  شماره 

صفحات  -

تاریخ انتشار 2011